Rational steering of insulin binding specificity by intra-chain chemical crosslinking
نویسندگان
چکیده
Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone's B-chain C-terminus for its IR-B specificity.
منابع مشابه
The effects of isomerism and side chain mutation on binding energy and NMR/NQR tensors of L-methionylasparagine and L-asparagylmethionine
Density functional theory methods(DFT) and natural bond orbital (NBO) analysis were used to investigate the effects of isomerism and side chain mutation at a microscopic level on the stability, binding energy and NMR/NQR tensors of structural isomers, L- methionylasparagine (Met-Asn) and L- asparagylmethionine (Asn-Met) in the gas phase. The results represented that the isomerism and side chain...
متن کاملIntra-Spike Crosslinking Overcomes Antibody Evasion by HIV-1
Antibodies developed during HIV-1 infection lose efficacy as the viral spike mutates. We postulated that anti-HIV-1 antibodies primarily bind monovalently because HIV's low spike density impedes bivalent binding through inter-spike crosslinking, and the spike structure prohibits bivalent binding through intra-spike crosslinking. Monovalent binding reduces avidity and potency, thus expanding the...
متن کاملThe specificity of protein-DNA crosslinking by formaldehyde: in vitro and in drosophila embryos.
Formaldehyde crosslinking has been widely used to study binding of specific proteins to DNA elements in intact cells. However, previous studies have not determined if this crosslinker preserves the bona fide pattern of DNA binding. Here we show that formaldehyde crosslinking of Drosophila embryos maps an interaction of the transcription factor Zeste to a known target element in the Ultrabithora...
متن کاملCrosslinking Constraints and Computational Models as Complementary Tools in Modeling the Extracellular Domain of the Glycine Receptor
The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel superfamily, is the major inhibitory neurotransmitter-gated receptor in the spinal cord and brainstem. In these receptors, the extracellular domain binds agonists, antagonists and various other modulatory ligands that act allosterically to modulate receptor function. The structures of homologous receptors and bindi...
متن کاملEffects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function.
The rational design of immunoprotective hydrogel barriers for transplanting insulin-producing cells requires an understanding of protein diffusion within the hydrogel network and how alterations to the network structure affect protein diffusion. Hydrogels of varying crosslinking density were formed via the chain polymerization of dimethacrylated PEG macromers of varying molecular weight, and th...
متن کامل